Формула

Операционные усилители в источниках питания – типы и математика работы

Операционные усилители являются важным элементом схемотехники источников питания, прежде всего – в части построения систем обратной связи и регулировки выходного напряжения, тока, мощности, схемы обратной связи по току. Из большого числа типов операционных усилителей в силовой электронике применяются следующие классы ОУ:

- ОУ общего применения (индустриальные LM324, LM358);

- ОУ с однополярным питанием;

- ОУ с широким диапазоном выходного напряжения – усилители так называемого класса rail-to-rail (R2R).

Другие классы ОУ при построении источников питания используются существенно реже. Условное обозначение операционного усилителя представлено на рисунке OPAMP.1.

Рисунок-схема

Рисунок OPAMP.1 - Условное обозначение операционного усилителя

Операционный усилитель – это математический прибор, обеспечивающий выполнение математических операций с аналоговыми сигналами. Отдельный операционный усилитель содержит:

- неинвертирующий вход (+);

- инвертирующий вход (-);

- выход (out);

- выводы питания.

При отсутствии обратной связи напряжение на выходе Vout в математически идеальном ОУ связано с напряжением на входе следующим образом:

Формула

где:

Vout – напряжение на выходе ОУ;

V+ – напряжение на неинвертирующем (+) входе;

V – напряжение на инвертирующем (-) входе;

Gopenloop - коэффициент усиления с разомкнутой петлёй обратной связи.

В реальном ОУ максимальное выходное напряжение ограничивается величиной напряжения питания. Режим без обратной связи практически не используется (т.к. он в принципе не нужен), а используются схемы с обратной связью, основными из которых являются:

- схема неинвертирующего усилителя;

- схема инвертирующего усилителя;

- схема дифференциального усилителя.

Основные параметры операционного усилителя

1. Напряжение питания (Supply Voltage) V – напряжение питания операционного усилителя. Обычно указывают минимальный уровень напряжения, при котором еще возможна работа ОУ и максимальное значение между «+» и «-» входами питания выше которого усилитель выходит из строя.

2. Максимальное дифференциальное входное напряжение (Differential Input Voltage) – максимальное напряжение между инвертирующим и неинвертирующим входами ОУ.

3. Максимальное входное напряжение (Input Voltage) – максимальное напряжение на любом из входов ОУ.

4. Максимальная рассеваемая мощность (Power Dissipation) – максимальная мощность рассеваемая корпусом ОУ.

5. Входной ток ОУ (Input Current) – величина тока входов операционного усилителя. В ОУ с входными каскадами на биполярных транзисторах выходной ток может зависеть от полярности напряжения: при положительных входных напряжениях он будет незначительным (единицы-десятки мкА), а при отрицательных напряжениях относительно «–» напряжения питания – составлять десятки мА.

6. Напряжение смещения (Input Offset Voltage) – максимальная разность напряжений между «+» и «-» входами ОУ в линейном режиме работы в составе одной из схем с положительной обратной связью. Этот параметр характеризует точность (прецезионность) ОУ.

7. Входной ток смещения, эквивалентный входной ток (Input Bias Current) – входной ток в линейном режиме работы.

8. Разность входных токов (Input Offset Current) – разность между входными токами ОУ.

9. Диапазон входных напряжений (Input Common-Mode Voltage Range) – показывает минимальное и максимальное напряжения на входах ОУ при условии работы в линейном режиме.

10. Потребляемый ток (Supply Current) – ток питания ОУ. Как правило, указывается ток собственного потребления ОУ без нагрузки.

11. Статический коэффициент усиления при большом сигнале (Large Signal Voltage Gain) – показывает отношение изменения выходного напряжения к вызвавшему это изменение изменению разности потенциалов между входами ОУ.

12. Коэффициент ослабления синфазного сигнала (common-mode rejection ratio).

13. Коэффициент подавления пульсаций напряжения питания (power supply rejection ratio).

14. Коэффициент связи между ОУ – для нескольких ОУ и одном корпусе (Amplifier-to-Amplifier Coupling).

15. Выходной ток цепи источника питания/цепь стока (Output Current Source/Sink).

Основные схемы включения операционных усилителей

Схема неинвертирующего усилителя

На рисунке OPAMP.2 изображена электрическая схема неинвертирующего усилителя на ОУ и её частный случай - повторитель напряжения. Резисторы R1 и R2 образуют резисторный делитель, обеспечивающий отрицательную обратную связь – часть напряжения с выхода ОУ поступает на инвертирующий вход усилителя. Коэффициент усиления регулируется глубиной обратной связи – коэффициентом деления резисторного делителя. Если же напряжение с выход ОУ напрямую подается на инвертирующий вход, то получается схема повторителя напряжения. Преимуществом схемы неинвертирующего усилителя является высокое входное сопротивление, отсутствие инверсии сигнала.

Рисунок-схема

Рисунок OPAMP.2 - Схема неинвертирующего усилителя (a) и повторителя напряжения (b)

Схема инвертирующего усилителя

На рисунке OPAMP.3 изображена электрическая схема инвертирующего усилителя на ОУ. Здесь отрицательная обратная связь обеспечивается за счет резистора R2 соединенного с выходом микросхемы ОУ.

Недостатками схемы является низкое входное сопротивление, полностью определяемое сопротивлением R1 и инверсия входного сигнала.

Рисунок-схема

Рисунок OPAMP.3 - Схема инвертирующего усилителя

Схема дифференциального усилителя

Схема дифференциального усилителя на ОУ (рисунок OPAMP.4) усиливает разность между входными напряжениями. Входное сопротивление схем определяется резистором R1 для входа 1 и суммой сопротивлений R1’ и R2’ для входа 2. Видно, что в общем случае в данной схеме перестановка входных сигналов местами изменяет результат – выходное напряжение. И лишь при равенстве сопротивлений резисторов:

Формула
Формула

Выходное напряжение равно:

Формула
Рисунок-схема

Рисунок OPAMP.4 - Схема дифференциального усилителя

Схема прецизионного двухполупериодного выпрямителя

Схема прецизионного двухполупериодного выпрямителя представлена на рисунке OPAMP.5. Величина RL – внутреннего нагрузочного сопротивления, выбирается в разумных пределах исходя из требования, что рабочий ток через него не будет превышать максимальный выходной ток ОУ (как правило, 10-50% от максимального выходного тока). Диоды VD1 и VD2 выбираются одного типа и с максимально близкими вольт-амперными характеристиками.

Рисунок-схема

Рисунок OPAMP.5 - Схема прецизионного двухполупериодного выпрямителя усилителя (единичный коэффициент усиления, RL – внутренне нагрузочное сопротивление, выбирается в соответствии с параметрами ОУ)

Виртуальный ноль для питания операционных усилителей

В ряде случаев, когда необходимо обеспечить биполярное питание операционного усилителя при наличии только одного источника питания (с двумя выводами – положительным и отрицательным). Наиболее простым решением по созданию виртуального нуля (искусственной средней точки) является использование резисторного делителя (рисунок OPAMP.6) с буферными конденсаторами для сглаживания импульсных нагрузок. Схемы с операционным усилителем обеспечивают четкую фиксацию напряжения средней точки даже при значительном «перекосе фаз» т.е. большой разности токов потребляемых от «плюсового» и от «минусового» выводов. При значительных потребляемых токах можно использовать схему с дополнительным токовым буфером, выполненным на двух комплементарных транзисторах. В схеме можно использовать недорогие и доступные ОУ общего применения, такие как LM324, LM358. Другим преимуществом схемы является меньшее потребление энергии, что важно при питании от гальванических батарей.

Рисунок-схема Рисунок-схема Рисунок-схема

Рисунок OPAMP.6. Схемы формирования виртуального нуля (искусственная средняя точка) для питания операционных усилителей